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The development of a new tailor-made scoring function to predict binding affinities of protein-
ligand complexes is described. Knowledge-based pair-potentials are specifically adapted to a
particular protein by considering additional ligand-based information. The formalism applied
to derive the new function is similar to the well-known CoMFA approach, however, the fields
used in the approach originate from the protein environment (and not from the aligned ligands
as in CoMFA, thus, a “reverse” CoMFA () AFMoC) named Adaptation of Fields for Molecular
Comparison is performed). A regular-spaced grid is placed into the binding site and knowledge-
based pair-potentials between protein atoms and ligand atom probes are mapped onto the grid
intersections resulting in “potential fields”. By multiplying distance-dependent atom-type
properties of actual ligands docked into the binding site with the neighboring grid values,
“interaction fields” are produced from the original “potential fields”. In a PLS analysis, these
atom-type specific interaction fields are correlated to the actual binding affinities of the
embedded ligands, resulting in individual weighting factors for each field value. As in CoMFA,
the results of the analysis can be interpreted in graphical terms by contribution maps, and
binding affinities of novel ligands are predicted by applying the derived 3D QSAR equation.
The scope of the new method is demonstrated using thermolysin and glycogen phosphorylase
b as test examples. Impressive improvements of the predictive power for affinity prediction
can be achieved compared to the application of the original knowledge-based potentials by
considering a sample set of only 15 known training ligands. Thus, with growing information
about the drug target studied, the new method allows one to move gradually from generally
valid to protein-specifically adapted pair-potentials, depending on the amount of training
information available and its degree of structural diversity. In addition, convincing predictive
power is also achieved for ligand poses generated by automatic docking tools.

Introduction

As direct consequence of the ongoing post-sequencing
efforts,1 a tremendous increase of structurally charac-
terized drug targets will be discovered. Accordingly,
structure-based drug design techniques, in particular
virtual screening, will be of steadily increasing impor-
tance. As a major advantage compared to experimental
high-throughput screening, they are, by far, both less
time-consuming and expensive. In addition, new in-
sights acquired during an ongoing drug design project
can be steadily fed back into every new design cycle,
allowing one to exploit as much information as is
available on each single step. However, to be successful
as a strategy for lead finding and optimization, in silico
structure-based approaches must generate and identify
relevant binding modes and predict accurately binding
affinities of potential drug candidates. Both aspects
strongly depend on our understanding of the determi-
nants of protein-ligand binding and how we translate
this knowledge back into computer methods to score
protein-ligand interactions.2-6

Over recent years, a broad spectrum of competitive
methods for scoring protein-ligand interactions has
emerged.7 Established approaches have been further
improved, e.g., in the area of the regression-based
scoring functions8-10 or methods based on first prin-
ciples.11-13 Furthermore, well-known techniques have
been applied to protein-ligand scoring by using atom-
atom contact potentials to develop knowledge-based
scoring functions.14-16 As a pragmatic alternative, exist-
ing scoring functions have been combined for intersec-
tion-based consensus scoring that allows one either to
enhance enrichment rates in virtual screening17,18 or to
improve binding affinity predictions.19-21

Besides solely exploiting the structural information
of a particular protein-ligand complex, a more convinc-
ing approach would be to include additional structural
and energetic information about already known ligands.
As a first step toward such a strategy, the consecutive
or iterative application of tools for molecular comparison
along with docking has been suggested.22 A set of
putative candidate molecules has been prescreened for
similarity with known inhibitors of carbonic anhydrase
II using the small molecule superpositioning program
FlexS.23 Subsequently, the candidates ranked most
similar to the references have been docked using
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FlexX.24 Using this procedure, subnanomolar inhibitors
have been discovered. The idea of considering ligand
information to improve the model building of proteins
by homology has recently been described.25 In turn,
such information can also be used for protein-ligand
docking.26-28

To develop so-called tailor-made scoring functions
specifically adapted to predict binding affinities with
respect to one particular protein, energetic information
about already known ligands is evaluated in addition
to structural information as described in the preceding
paragraph. An early approach along these lines has
been introduced by Holloway et al.29 who correlated
intermolecular force field energies calculated for HIV-1
protease inhibitor complexes using the MM2X force field
with observed pIC50 values. Instead of correlating the
total computed binding energy to the experimentally
determined binding free energy, Wade et al. used
selected interaction energy components. They are de-
rived from interactions between inhibitors and indi-
vidual protein residues (including waters) and corre-
lated to binding free energies via PLS analyses
(COMBINE method).30,31 Similar approaches have also
been described.32-36 Considering only energetic compo-
nents and neglecting entropic contributions can only be
applied in the case of ligands where entropic changes
upon binding do not matter.37,38 To overcome this
limitation, several attempts to combine force field
derived contributions with terms to describe changes
in solvation and conformational degrees of freedom upon
binding have emerged. In these studies, either a linear
regression or PLS analysis has been used to correlate
experimental binding affinities with computed proper-
ties.34,39-45

The methods described in the last paragraph suffer
however from two shortcomings. First, to obtain high-
quality correlations, a large data set of structurally
diverse training compounds spreading over a sufficient
range of binding affinities is necessary. This prerequisite
is difficult to accomplish at the beginning of a drug
design project. Second, the translation of the results of
a regression model into suggestions for how to modify
a particular ligand structure to improve its binding
affinity is by no means straightforward. Usually, rather
general information such as “decrease the van der Waals
repulsion” or “increase the solvent accessible surface
buried upon ligand binding” is not very conclusive with
respect to the design process. Murray et al.46 introduced
an interesting alternative to partially circumvent the
first limitation. They adapted a previously published
general scoring function47 to a set of thrombin complexes
under the restraints of the earlier (diverse) training set
using Bayesian regression. This allows for fine-tuning
of the function to either general or specific purposes.
COMBINE and related approaches provide at least
some insight for how to translate scoring results into
structural design aspects.30,33,40

Interestingly, the field of drug design knows alterna-
tive techniques to score and predict binding affinities
within a set of ligands usually with a surprisingly high
predictive power. These are the different variants48 of
comparative molecular field analyses (CoMFA).49 Fur-
thermore, the results of these analyses can be translated
rather intuitively into ligand design aspects. Once a

particular alignment of ligands is given, the approach
maps binding affinity differences in terms of molecular
field differences calculated by the use of various probes
placed at the intersections of a regularly spaced grid.
The actual correlation and predictive QSAR equation
is extracted using PLS analysis. Originally, 3D QSAR
was developed for design problems where the structure
of the target protein is unknown. However, increasingly,
it is also applied to cases where the corresponding
receptor structure has been determined. There, usually,
the protein information is only considered to suggest a
meaningful ligand alignment; however, in the potential
field calculations, information about the surrounding
protein environment is, rather unreasonably, neglected.

Recently, we developed the knowledge-based scoring
function DrugScore14 by extracting structural informa-
tion from crystallographically determined protein-
ligand complexes and converting them into distance-
dependent pair-potentials and solvent accessible surface-
dependent singlet-potentials. This function reliably
recognizes correct binding modes and predicts binding
affinities. Furthermore, it can be used to reliably predict
which type of ligand atom would most favorably bind
at a given site in a protein binding pocket (“hot spot”
analysis).50 Thus, the pair-potentials used for scoring
ligand affinities can also be applied to support the actual
design and ligand optimization process.

Regarding the strength of both methods, the knowl-
edge-based potentials to score binding modes using
protein information and the comparative molecular field
analyses to map differences in ligand binding data
prompted us to develop a novel approach to adapt
knowledge-based potentials specifically to one protein
by considering ligand-based information in a CoMFA-
type approach. As a result, both a tailor-made scoring
function and a protein-based CoMFA are developed.
Since the interaction fields used in our approach have
their origin in the protein environment, i.e., reverse to
CoMFA-type fields, we anticipate to call our method
AFMoC (Adaptation of Fields for Molecular Compari-
son). The approach allows us to gradually move from
general knowledge-based potentials to protein-specifi-
cally adapted ones regarding the amount of ligand data
available for training. It thus overcomes the prerequisite
to involve complete ligand training sets. In addition,
since interaction fields based on atom types are used,
interpreting the PLS results in terms of ligand structure
optimization to achieve better binding affinities is
straightforward. Also, the information contained in the
different atom-type based interaction fields is mutually
orthogonal. This is an important advantage over the
information comprised by generic fields such as “van der
Waals” or “electrostatic” interaction used in CoMFA.
Finally, since structural information of experimentally
determined complexes is converted into statistical pair-
potentials, the latter (and the derived interaction fields)
are expected to contain besides enthalpic also entropic
effects, resulting from (de-)solvation.14

First, we will describe the theoretical background of
the new AFMoC method followed by the application to
two data sets composed by thermolysin and glycogen
phosphorylase b inhibitors. Finally, the impact of an
improved scoring function together with suggestions for
an improved ligand design will be given.
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Theory
The distance-dependent pair-potentials of mutual

atom-atom contacts used in DrugScore to score protein-
ligand interactions were derived from a database of
structurally known protein-ligand complexes.14 In case
of a sufficient number of different complexes, it is
anticipated that the contact pair distributions observed
in the crystalline state also represent these interactions
under general conditions. Similarly, the pair-potentials
derived from these distributions contain generally valid
information about protein-ligand interactions.51,52 How-
ever, as a consequence of their origin, the pair-potentials
only depict an averaged representation of these interac-
tions. Situations that deviate from this “average” are
possibly not treated adequately. In addition, the pair-
potentials are used assuming that the distributions of
intermolecular distances (and hence the pair-potentials)
are similar even for molecular environments deviating
from a pair of atoms under investigation. Using ad-
ditional structural and energetic information about the
special conditions present in one particular protein
would enable us to transform these averaged (yet
generally valid) potentials into protein-specifically
adapted ones.

In the original CoMFA, a unique probe is placed to
all intersections of a regularly spaced grid. Next the
ligands to be analyzed are embedded into this grid and,
by using some functional form, interaction energies are
calculated between probe atoms and ligand atoms. In
CoMFA Lennard-Jones and Coulomb interactions are
computed. Equally well-known other functional forms
can be used, e.g., potentials taken from GRID53 or
Gaussian-type similarity indices as in CoMSIA,54 or, as
in the present study, knowledge-based pair-potentials.
Here, however, instead of placing a uniform probe to
all intersections, the protein environment is considered
by placing the grid into the binding site and mapping
the pair-potentials between protein and ligand atom
probes onto the grid intersections (Figure 2), resulting
in “potential fields”. By “multiplying” atom-type proper-
ties of ligands docked into the binding site with neigh-
boring grid values, “interaction fields” are produced from

the “potential fields”. As in usual CoMFA in a second
step, a PLS analysis55,56 is performed to correlate these
fields with the actual binding affinities of the embedded
ligands. This results in individual weighting factors for
each field value. The information contained in these
tailor-made fields can be translated into ideas for how
to modify a particular ligand to optimize its binding.
Finally, the original “interaction fields” as well as the
specifically adapted ones can be used to score, e.g., the
binding modes of novel ligands. These three steps will
be described in more detail in the following paragraphs.

Calculation of Interaction Fields. Inside the bind-
ing pocket of a protein a cubic grid G is constructed.
The interaction ∆P between a probe atom of ligand atom
type t ∈ TPLS (where TPLS is a subset of all available
ligand atom types T parametrized in the DrugScore
pair-potentials14) located at grid point g and the sur-
rounding protein atoms p ∈ P of type Τ(p) is calculated
using the distance-dependent pair-potentials of Drug-
Score ∆Wt,Τ(p)(rg,p) (eq 1). Here, rg,p is the distance
between g and p.

So far, this procedure is identical to the previously
described “hot spots” analysis.50 In addition, to be able
to calculate interactions even in the vicinity of protein
atoms where the knowledge-based potentials cannot be
defined due to missing experimental contact data, an
artificial repulsion term is added to each pair-potential.
It is computed using a Gaussian function centered at
the origin of the pair-potential (Figure 1). The half-width
of this function has been adjusted such that its value
and gradient coincide with those of the potential at a
distance dmax + dr, with dr ) 0.1 Å.14 dmax corresponds
to the position of the first maximum of a pair-potential
with respect to the origin. Thus, for distances rg,p
between 0 and dmax + dr, the values of the repulsion
function are used, whereas for distances larger than
dmax + dr, the values of the original pair-potentials are
applied. Fields calculated following this protocol will be
referred to as “potential fields”.

In the following step, the interactions of the protein
with a docked ligand in the binding pocket are mapped
onto neighboring grid points by multiplying the poten-
tial field value ∆Pt

g for ligand atom type t at grid point
g with the sum of distance-dependent contributions
B(rg,l) of ligand atoms l ∈ L of type Τ(l) ) t (eq 2).

The distance-dependent contribution B(rg,l) is calcu-
lated using a Gaussian function, and it is normalized
with respect to the sum of the contributions to all grid
points (eq 3). We selected a Gaussian-type distance
dependence similarly to the CoMSIA approach since the
Gaussian-type functional form is well suited to adjust
and distribute the contribution of ligand atoms to the
neighboring grid points.

Thus, for k different ligands, k‚|TPLS| different inter-
actions fields are obtained. Here, |TPLS| represents the
number of distinct atom types in the set TPLS. By
multiplying “potential field” values with “properties”

Figure 1. Schematic representation of the Gaussian-type
repulsion term (broken line) added to the DrugScore pair-
potentials (solid line). For distances between 0 and dmax + dr,
values from the Gaussian are used whereas for distances
between dmax + dr and rmax, values of the pair-potentials are
applied (bold lines). Regions of both functions not considered
in functional dependency are drawn as thin lines.

∀ t ∈ TPLS, ∀ g ∈ G: ∆Pt
g ) ∑

p ∈ P

∆Wt,Τ(p)(rg,p) (1)

∀ t ∈ TPLS, ∀ g ∈ G: ∆Wt
g ) ∆Pt

g ∑
l ∈ L:Τ(l))t

B(rg,l) (2)
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∑l∈L:Τ(l))t B(rg,l), fields are produced that may be con-
sidered as “interaction fields“ or “energy fields“. To-
gether with eq 1, the sum of ∆Wt

g over all grid points
g ∈ G results in the pair-potential contributions of all
ligand atoms of type t with the surrounding protein
atoms. They are obtained as distance-dependent weighted
average of the potential values ∆Pt

g at grid points
surrounding the ligand atoms. For the extreme case of
a grid with zero spacing and a Delta function instead
of the Gaussian function (i.e., σ ) 0 in eq 3), this average
value becomes equal to the sum over the appropriate
contributions of the pair-potentials directly evaluated
between ligand and protein atoms.

Correlating Interaction Field Values with Bind-
ing Affinities. The values of the “interaction fields”
calculated for a set of ligands docked into the binding
pocket of one protein could, in principle, be correlated
with experimentally determined binding affinities using
PLS55,56 similar to CoMFA.49 However, it has to be
considered that the interaction fields are atom-type
specific, rather than generic as in the related CoMFA
or CoMSIA54 approaches. As a consequence, “interaction
fields” for atom types t ∈ TPair (which are contained in
T but not in TPLS) rarely present in the ligand training
set have to be excluded for statistical insignificance or
their minor contributions as “two-/ three-/ four-/ .../ level
variables” in the subsequent regression analysis. Yet,
contributions of these atoms with respect to binding
affinity must be taken into account.

Recently, we have shown that scoring values obtained
by DrugScore for protein-ligand complexes can be
scaled to experimentally determined pKi values.50 In
addition, the obtained scaling factor cS

Pair can be
transferred reliably between sets of different protein-
ligand complexes. Hence, the contribution pKi

Pair to the
binding affinity due to all ligand atoms of type t ∈ TPair

can be determined. Subtracting pKi
Pair from the experi-

mental pKi value reveals the affinity contribution aris-
ing from all ligand atoms of type t ∈ TPLS, denoted as

pKi
PLS. The latter is then correlated to the “interaction

field” values by PLS, which results in weighting factors
ct

g (termed “coefficients” in the QSAR equation) for
every grid point g and every ligand atom type t ∈ TPLS.

This concept is based on two assumptions: (i) the
contribution pKi

Pair to the overall pKi value will be of
minor importance if the number of ligand atoms with
type t ∈ TPair is small compared to the number of ligand
atoms with atom type t ∈ TPLS; (ii) estimating pKi

Pair

using the DrugScore pair-potentials applying a common
cS

Pair will be sufficiently accurate.
Predicting Binding Affinities while Gradually

Switching between Original and Adapted Interac-
tion Fields. Multiplication of the “potential field”
values ∆Pt

g with the weighting factors ct
g at every grid

point g yields the protein-specifically adapted potential
fields ∆Pt

/g. They are used to calculate the binding
affinity contribution pKi

PLS of a ligand by summing
over all grid points and ligand atoms with types t ∈ TPLS

(eqs 2 and 3). Of course, for the ∆Pt
g values the same

centering and scaling has to be applied as in the PLS
prior to multiplication with the weighting factors ct

g

and the intercept of the QSAR equation needs to be
considered. Finally, the contribution pKi

Pair of atoms
with types t ∈ TPair must be calculated (see above). Due
to the latter step, also ligands with atom types not
contained in the training set can be considered in the
affinity prediction.

In the case of small data sets of closely related ligands
or affinity data used for adaptation not well spread over
at least 3 orders of magnitude,57 the obtained PLS
results will inevitably suffer from large prediction errors
for statistical reasons. In such situations, likely the
original pair-potentials in DrugScore reveal more reli-
able predictions. With increasing importance and cover-
age of the added structural and energetic information
comprised in the training set, this situation will change.
The gradually enhanced consideration of specifically
adapted potentials replacing the original ones appears
to be the strategy of choice. Optionally, we “mix” linearly
the original (∆Pt

g) and adapted (and centered and
scaled) potential fields (∆Pt

/g) to reveal better affinity
predictions (eq 4). The “mixing coefficient” θ is allowed
to vary between 0 and 1. As a rule of thumb, small
values for θ should be selected if molecules in the

Figure 2. Scheme to explain the calculation of “interaction fields”. Multiplying the “potential field” values (eq 1) for ligand atom
type “hydroxyl oxygen” (left) with values of a Gaussian function centered at the position of a ligand atom (eq 3) (center), pair
interactions between a ligand and a protein atom are mapped onto the neighboring grid intersections (eq 2) (right). For clarity,
the binding pocket (left) and the ligand (center) are depicted separately.

B(rg,l) )

exp{-
rg,l

2

2σ2}
∑

g ∈ G

exp{-
rg,l

2

2σ2}
(3)
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training set reflect little additional information or the
molecules to be predicted significantly deviate from
those in the original training set.

Here, 〈pKi,train
PLS 〉 is the average of all pKi

PLS values of
the training set and equals the intercept of the QSAR
equation obtained by PLS.

Novel compounds that are structurally similar to the
members of the training set are docked into the binding
pocket following the same protocol as applied to the
training molecules. Equation 4, eventually comple-
mented by a pKi

Pair contribution, then yields an esti-
mate of the binding affinity. However, if the prediction
for molecules with structurally strongly deviating skel-
etons is attempted (e.g., in virtual screening), two
limitations must be reflected. First, ligand portions that
exceed beyond the scope of the “trained” grid will be
scored based on the original DrugScore pair-potentials.
Similarly, if ligand portions coincide with regions of the
grids where the variance of information used for train-
ing has been too scarce to be considered in PLS (see
Methods), we switch back to the original potential field
values ∆Pt

g for scoring, assuming that original Drug-
Score performs better than simply ignoring such situ-
ations.

Methods
Data Sets and Alignments. The AFMoC approach has

been validated using two data sets of thermolysin and glycogen
phosphorylase b inhibitors, respectively. The thermolysin set
comprises 61 compounds for training and 15 compounds for
testing, taken from Klebe et al. (Table 4 in ref 54; see also
Supporting Information). The experimentally determined in-
hibition constants are used as pKi values and spread over a
satisfactorily large range of 9.7 log units for the training
compounds. The data set of glycogen phosphorylase inhibitors
was compiled from studies of Cruciani et al.,58 Pastor et al.,59

and Hopfinger et al.40,60 Comparing pKi values of compounds
that are listed in more than one reference ensured the
consistency of this data set. It contains 58 compounds for
training and 8 compounds for testing. The structures of these
glucose derivatives are summarized in Table 1 and Table 2
together with the experimentally determined pKi values. They
cover a range of 4.7 log units in case of the training compounds.
For all compounds, standard protonation states are assumed,
i.e., carboxylate and phosphate groups are considered to be
deprotonated, and aliphatic amino groups are considered to
be protonated.

In both cases, a protein-based alignment was applied to
obtain a consistent superimposition of all inhibitor molecules.
The binding modes of 8 of the 76 thermolysin inhibitors have
been determined crystallographically (Protein Data Base
(PDB)61 codes: 1tlp, 1tmn, 2tmn, 4tln, 4tmn, 5tln, 5tmn,
6tmn). Superimposing the remaining seven protein chains onto
1tlp yielded a mean rmsd of only 0.14 ( 0.05 Å. A similar value
was obtained considering only the binding site residues. These
crystal structures were used as templates to construct and
superimpose the remaining thermolysin inhibitors. The protein
environment, including Zn, as given in 1tlp was used to
calculate the potential fields (see below). Invariant molecular
portions or interaction patterns present in the various ligands
of the set were superimposed onto the crystallographic refer-
ences followed by a minimization inside the rigid binding
pocket of 1tlp (Figure 3). The MAB force field as implemented

in MOLOC was used.62 For the glycogen phosphorylase inhibi-
tors, a similar protocol has been applied. Here, the protein-
ligand complexes 1a8i, 1axr, 1b4d, 1e1y, 1noj, 1nok, 2gpb, 2prj,
3gpb, 4gpb, 5gpb, and 6gpb were taken as templates. Super-
imposing all protein chains onto 2gpb indicated intrinsic
rigidity of this binding pocket (mean rmsd ) 0.43 ( 0.16 Å)
except for Lys574, which exhibits slight induced fit motions.
Once constructed all ligands were minimized in the rigid
binding pocket of 2gpb with the MAB force field (Figure 3).
The protein structure of 2gpb was also used for the calculation
of potential fields (see below).

AFMoC Analysis. Interaction fields for the superimposed
thermolysin and glycogen phosphorylase b inhibitors were
calculated as described (Theory section (eqs 1-3)) using the
protein structures 1tlp and 2gbp as reference, respectively. The
size of the grid boxes was selected in a way that all inhibitor
molecules were sufficiently embedded with a margin of at least
4 Å. To study the influence of grid spacing on PLS perfor-
mance, values of 0.5, 1.0, 1.5, and 2.0 Å were tested. However,
if not stated differently, results are reported for 1.0 Å spacing.
Table 3 summarizes details about the grids used in the
analyses.

The repulsive properties of the function added to the pair-
potentials at short atom-atom distances influences interaction
field values at grid points close to the protein surface. A
(dimensionless) value of 10 has been selected for the height of
the Gaussian repulsion function at the origin of an atom-atom
contact. This value has been adjusted to be of the same order
of magnitude than the largest values of the pair-potentials.
Variations of the steepness of the repulsion function did not
significantly alter the results.

To estimate pKi
Pair values by scaling scoring values calcu-

lated with DrugScore pair-potentials, the coefficient cS
Pair )

-3.11 × 10-2 was determined as average over scaling factors
obtained for data sets of serine proteases, metallo proteases,
endothiapepsines, and two mixed data sets (“others” and
“Böhm1998”; see ref 50 for details). Of course, experimentally
determined pKi values of these complexes were correlated with
scoring values computed only with pair-potentials.

To correlate the individual interaction fields with binding
affinities, statistical analyses were performed using our own
in-house implementation of the (SAM)PLS algorithms.63 Ac-
cording to the described fitting algorithm, the results obtained
from eq 12′ and 16 in the cited study have also been centered
in our case. Furthermore, the columns of the descriptor matrix
have been centered on input. However, since these ∆Wt

g

values are obtained applying DrugScore pair-potentials (eq 2),
which were already mutually weighted,14 neither scaling of
the columns nor of the interaction fields in total is performed.
Test calculations applying auto scaling or block scaling
resulted in AFMoC models of reduced predictive power. To
check statistical significance of the PLS models, cross-valida-
tion runs were performed by means of the “leave-one-out”
(LOO) procedure using the enhanced SAMPLS method.
Thereby, following recommendations of Wold,56 Kubinyi et
al.,64 and Bush et al.,63 the columns of the descriptor matrix
were recentered for every new cross-validation run. The
optimal number of components has been determined by
selecting the smallest sPRESS value. The same number of
components was subsequently used to derive the final QSAR
models. For all conventional analyses (no cross-validation), the
“minimum-sigma” standard deviation threshold was set to
5 × 10-4. This value was adjusted in a way that approximately
90% of all columns of the descriptor matrix were eliminated
during PLS analysis. The statistical results are summarized
in Table 4. The q2, sPRESS, r2, S, and contribution values were
computed as defined in ref 49. Plots of predicted versus actual
binding affinities for the fitted PLS analyses are shown in
Figure 4.

To apply an even more rigorous statistical test, several runs
of a “leave-five-out” procedure have been performed using
models based on the 1.0 Å grid spacing. For this, five

pKi
PLS ) ∑

g∈G
∑
l∈L:

Τ(l)∈TPLS

B(rg,l)[θ∆P*Τ(l)
g +

(1 - θ)cS
Pair ∆PΤ(l)

g ] + θ〈pKi,train
PLS 〉 (4)
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Table 1. Glucose Analog Inihibitorsa of Glycogen Phosphorylase b Used as Training Set40,58-60
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arbitrarily selected compounds were discarded from the train-
ing set and used for prediction. Statistical results are shown
in Table 5.

Furthermore, to detect possible chance correlations, the
biological data were scrambled randomly and model calcula-
tions were repeated. Only negative q2 values were obtained
in such cases (Table 6), thus supporting the assumption that
proper correlations with the original biological data are given.

To distribute the atomic protein-to-ligand interactions over
neighboring grid points, a Gaussian function has been intro-
duced (eqs 2 and 3). The half-width of this function determines
the “local smearing” of these interactions: smaller σ values
result in a more locally restricted mapping, whereas larger σ
values tend to average adjacent interactions. To study the
importance of this feature, σ values of 0.55, 0.7, ..., 1.3 Å were
used to calculate interaction fields (Figure 5). In all other
calculations, a σ value of 0.7 (thermolysin data) and 0.85
(glycogen phosphorylase b data) has been applied.

Since the interaction fields obtained by mapping protein-
ligand interactions onto neighboring grid points are (ligand)
atom-type specific, various combinations can be used to build
up the descriptor matrix as input for PLS analysis. To check
how much the individual fields contribute to the derived model,
we started with a combination of five fields representing to
our best knowledge interaction differences of the considered
ligands. We subsequently added further fields until no sig-
nificant improvement in q2 values could be achieved. Table 7
displays the results for thermolysin and glycogen phosphory-
lase b, respectively. In bold, the field combinations are
indicated which were selected for all remaining calculations
throughout this study.

To investigate by how much the statistical results depend
on the relative orientation of the molecules of the data set with
respect to the lattice,65 the entire data sets were translated
with respect to the grid origin. The original grid boxes (1.0
and 2.0 Å lattice spacing) were extended by 1.0 and 2.0 Å in
x, y, and z directions, respectively, to guarantee a sufficiently
large margin embedding all molecules during translation. The

data sets were then translated along the xyz diagonal from 0
to 1.0 or 2.0 Å in steps of 1/4, 1/2, and 3/4 of the grid spacing.
For all orientations produced, interaction fields were calculated
and PLS analyses were performed. The obtained q2 values are
shown in Figure 6 for both data sets.

To interpret the AFMoC results graphically, at every grid
point the product of the standard deviation of the considered
interaction field values times the coefficient of the QSAR
equation has been calculated (“STDEV*COEFF” field) and
stored for contouring within SYBYL.66 In an iterative manner,
appropriate contour levels were selected to display best
interpretable contour maps (Figure 9 and Figure 10).

For comparison, CoMFA analyses were performed as imple-
mented in SYBYL66 for both data sets using steric and
electrostatic fields. Partial atomic charges were computed
using the AM1 Hamiltonian67 within MOPAC 6.0.68 All CoMFA
calculations were done with SYBYL standard parameters
using a sp3 carbon probe atom with a charge of +1.0.

Prediction of Binding Affinities. To estimate the predic-
tive power of the AFMoC models, 15 thermolysin and 8
glycogen phosphorylase inhibitors were selected as test sets
(see above). Following the same protocol as for the training
compounds, the molecules were manually docked into the
binding pockets. Predictions were then performed using the
AFMoC models based on the 1 Å grid spacing and compared
to the results based on a prediction using the original Drug-
Score pair-potentials. Statistical results are given in Table 8,
and plots of predicted versus experimentally determined
binding affinities are shown in Figure 7.

To avoid large prediction errors in case of training sets
comprised by only a small number of compounds or data sets
composed by closely related molecules, contributions to binding
affinity based on the original DrugScore potentials can be
mixed with those from the individually adapted AFMoC fields
(eq 4). To estimate the predictive power of our approach in
situations where only a reduced number of reference com-
pounds is available, 100 times a subset of 5, 10, 15, 30, and
45 compounds were randomly selected from the training set

Table 1. (Continued)

a The whole ligand is depicted.
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of thermolysin inhibitors. For these 5 × 100 selections, PLS
analyses were performed. Finally, the 500 AFMoC models
obtained were used together with the original DrugScore
potential fields to predict binding affinities for the 15 test set
compounds. To achieve a mixing of the fields, the parameter
θ (eq 4) was varied between 0 (solely DrugScore pair-potential
fields) and 1 (solely AFMoC fields) in steps of 0.1; r2 values
were averaged over all 100 runs, respectively. In addition, the
model based on all 61 training compounds has been regarded.
Results are given in Figure 8 (left). With the glycogen
phosphorylase inhibitors, an analogous procedure has been
performed (Figure 8, right). Ligand coordinates of all molecules
used in the analyses can be obtained from the authors in
SYBYL molfile format upon request.

To use specifically adapted AFMoC fields in virtual screen-
ing, the method must be robust enough not only to predict
binding affinities reliably for manually placed ligands but also
to handle correctly ligand binding modes generated by auto-
matic docking. Therefore, we generated up to 500 ligand poses
for each test set compound with FlexX. During the incremental
build-up procedure and the final scoring FlexX used DrugScore
pair-potentials. For the glycogen phosphorylase inhibitors,
default parameters were applied, whereas the higher flexibility
of the thermolysin ligands afforded enhanced sampling. Fi-
nally, all generated ligand binding modes were rescored using
the AFMoC models based on 61 or 58 training compounds.
Again, the mixing parameter θ was varied between 0.0 and
1.0 in steps of 0.1. To investigate whether a subsequent
geometry optimization of the generated binding modes of
thermolysin ligands improves the affinity predictions, all
docking solutions were submitted to an energy minimization
inside the (rigid) enzyme binding pocket using the MAB force
field, restricting the number of iterations to 300. The results
are summarized in Table 9.

Results and Discussion

Data Sets and Alignment Procedure. To validate
the AFMoC approach, two data sets comprising ther-
molysin and glycogen phosphorylase b inhibitors, re-
spectively, were selected. All of the 61 thermolysin
compounds applied for training and at least 11 of the
15 test compounds have also been used in the study of
Waller and Marshall,69 De Priest et al.,70 and Klebe et
al.54,71 for the validation of 3D QSAR approaches. In case
of the glycogen phosphorylase b inhibitors, combining
data from several studies40,58-60 lead to a data set of 58
training (Table 1) and 8 test compounds (Table 2). In
both cases, the pKi values of the training compounds
spread over a range of at least 3 logarithmic units.57

The analysis of the presently determined crystal struc-
tures of protein-ligand complexes showed only minor
deviations in the protein structures, demonstrating their
rigidity upon ligand binding. Furthermore, all ligands
accommodate the same region of the binding pocket.

For the data sets of thermolysin inhibitors, we already
reported the prediction of binding affinities. The results
showed a moderate predictive power applying Drug-
Score.50 In the case of glycogen phosphorylase b inhibi-
tors, DrugScore even failed to predict binding affinities
(see below). Unsatisfactory predictions have also been
reported in other studies for sugar-binding protein-
ligand complexes (see Table 5 in ref 15). Thus, both
cases are challenging to see whether any tailoring of
the DrugScore pair-potentials increases the predictive
power.

Table 2. Glucose Analog Inihibitorsa of Glycogen
Phosphorylase b Used as Test Set40,59,60

a The whole ligand is depicted.

Figure 3. Alignment of 61 thermolysin inhibitors (top) and
58 glycogen phosphorylase b inhibitors (bottom) within the
binding sites of 1tlp and 2gpb, respectively. The solvent-
accessible surface is indicated as a solid surface.
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Relative mutual superposition of all ligands has been
obtained using the protein binding-pocket as a con-
straint. As recently shown, this produces superior
models in 3D QSAR approaches.72 As a final step,
geometry optimization has been applied to relief unfa-
vorable inter- (and intra-) molecular interactions.

In the glycogen phosphorylase b case, for several of
the considered ligands, complex structures have been
determined crystallographically.73 These were used as
a starting point for the mutual alignment, comple-
mented by manually docked ligands following the same
procedure as in the thermolysin case.

Significance and Robustness of AFMoC Analy-
ses. Table 4 summarizes the statistical results for both
data sets as a function of the applied grid spacing.
Models with q2 > 0.5 are generally accepted as signifi-
cant.74 In the present study, q2 > 0.5 has been obtained
with a lattice spacing of 0.5, 1.0, and 1.5 Å, either for
the part of pKi being adapted during PLS analysis
(pKi

PLS, s. Theory section) and for the consideration of
the total binding affinity (Figure 4). For both data sets,
CoMFA analyses using a 1 Å grid spacing were per-
formed for comparison. In case of thermolysin, a q2 value
of 0.63 (sPRESS ) 1.33; 8 components) was obtained which
is comparable to those reported in previous studies.54,71

For the glycogen phosphorylase b data set, a q2 value
of 0.62 (sPRESS ) 0.68; six components) was calculated.
Hence, in both cases, q2 values obtained by CoMFA are
comparable to those computed by AFMoC.

Table 5 summarizes for 10 runs of “leave-five-out”
cross-validation with AFMoC that also q2 values > 0.5

were obtained. Further indication for the significance
of the obtained models is provided by the randomly
scrambled data that do not allow one to obtain reason-
able models (Table 6).

Table 4 shows that the dependency on the grid
spacing is small up to 1.5 Å, beyond this spacing q2

drops below 0.5. The latter has to be seen with regard
to the setting of σ that governs the degree of “smearing”
information about protein-ligand interactions across
neighboring grid points (eq 3). Figure 5 shows for a 1 Å
grid spacing that the interdependence of q2 with σ is
negligible for glycogen phosphorylase b, whereas an
inverse correlation of q2 with σ can be observed for the
thermolysin data. Hence, values of 0.7 and 0.85 Å have
been chosen for subsequent calculations using ther-
molysin and glycogen phosphorylase b inhibitors, re-
spectively. A selection of σ ) 0.7 Å means that a
particular interaction declines across a distance of 1 Å
(2 Å) to 21% (1%) of its original value. This shows that
particularly local interactions are taken into account by
our approach.

Another reason for selecting rather small σ values
results from the fact that ligands approach the protein
surface to van der Waals distance. Larger σ values
involve also distant grid points in the calculation that
can easily coincide with the space occupied by the
protein atoms. The interaction information at grid
points next to the protein surface is mainly determined
by the repulsion term that is rather unspecific with
respect to the ligand atom type. On the other hand, PLS
models using interaction fields neglecting such repulsion

Table 3. Parameters of the Grid Sizes Used for AFMoC Analyses

thermolysin glycogen phosphorylase b

grid spacinga 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
Xb -7.19 (46) -7.19 (24) -7.19 (16) -7.19 (13) -10.11 (40) -10.11 (21) -10.11 (14) -10.11 (11)
Yb -12.72 (45) -12.72 (23) -12.72 (16) -12.72 (12) -6.44 (32) -6.44 (17) -6.44 (12) -6.44 (9)
Zb -10.69 (37) -10.69 (19) -10.69 (13) -10.69 (10) -6.27 (41) -6.27 (21) -6.27 (15) -6.27 (11)
no. of

grid points
76590 10488 3328 1560 52480 7497 2520 1089

a In Å. b Given is the coordinate of the lower, left, front corner. In parentheses, the number of grid points in each direction is shown.

Table 4. Statistical Results for AFMoC Analyses

thermolysin glycogen phosphorylase b

spacinga 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
σ 0.70 0.70 0.70 0.70 0.85 0.85 0.85 0.85
q2 b,c 0.58 (0.61) 0.59 (0.62) 0.52 (0.56) 0.46 (0.50) 0.53 (0.47) 0.58 (0.52) 0.57 (0.52) 0.48 (0.42)
spress

d,e 1.41 1.38 1.50 1.51 0.78 0.75 0.78 0.82
r2 b,f 0.97 (0.97) 0.97 (0.97) 0.95 (0.95) 0.73 (0.75) 0.71 (0.67) 0.79 (0.77) 0.91 (0.90) 0.72 (0.68)
Sd,g 0.35 0.34 0.46 1.03 0.60 0.50 0.33 0.59
Fb,h 159.1 (173.4) 165.1 (180.0) 99.2 (108.3) 37.4 (41.9) 66.4 (55.9) 51.5 (44.2) 74.0 (64.9) 45.9 (38.7)
compi 10 10 9 4 2 4 7 3
fraction

C.3
0.35 0.36 0.37 0.36 0.36 0.36 0.40 0.35

C.2 0.24 0.21 0.13 0.22
C.ar 0.31 0.31 0.32 0.35 0.13 0.18 0.17 0.13
O.3 0.08 0.08 0.09 0.10 0.08 0.07 0.10 0.11
O.2 0.08 0.07 0.07 0.07 0.06 0.06 0.08 0.06
O.co2 0.07 0.06 0.07 0.09
N.3 0.01 0.01 0.02 0.01
N.am 0.09 0.09 0.07 0.02 0.12 0.12 0.10 0.11
S.3 0.02 0.02 0.01 0.01

a In Å. b Values are given considering only the part of binding affinity (pKi
PLS) used in PLS analysis or considering the total binding

affinity (values in parentheses). c q2 ) 1 - PRESS/SSD as obtained by “leave-one-out” cross-validation. PRESS equals the sum of squared
differences between predicted and experimentally determined binding affinities, SSD is the sum of the squared differences between
experimentally determined binding affinities and the mean of the training set binding affinities. d In logarithmic units. e sPRESS )
xPRESS/(n-h-1) as obtained by “leave-one-out” cross-validation. n equals the number of data points, h is the number of components.
f Correlation coefficient. g S ) xRSS/(n-h-1). RSS equals the sum of squared differences between fitted and experimentally determined
binding affinities. h Fisher’s F-value. i Number of components.
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terms resulted in significantly lower q2 values (data not
shown). This demonstrates the importance of including
steric repulsion. Apart from higher q2 values for 1 Å
compared to 2 Å spacing, Figure 6 illustrates that
translations along the grid do not affect the statistical
results of the models in the 1 Å case, in contrast to
results often reported for CoMFA.65 Accordingly, for all
subsequent calculations, a 1 Å grid spacing has been
used.

Table 4 also depicts the single interaction field
contributions to explain binding affinity differences.

Contributions from C.3, C.ar, and C.2 fields are notice-
ably larger than those from fields calculated for polar
ligand atoms. This trend corresponds to the frequency
distribution of atom types in the ligand data sets. Table
7 shows how the q2 values depend on the interaction
field combinations used to derive AFMoC models. Start-
ing with five initial fields representative for the interac-
tions experienced by the various ligands, the inclusion
of two further fields increased q2 by 31 and 14%,
respectively. The inclusion of further fields or the
replacement by others resulted in reduced q2 values.
Hence, the final models were derived using seven
different interaction fields (bold in Table 7).

At this point, an important difference between
CoMFA- or CoMSIA-type and AFMoC-type interaction
fields has to be mentioned. For CoMFA or CoMSIA
applications, the increase in statistical significance of
PLS results, due to the addition of further fields, has
been discussed.48,75 Including fields describing hydrogen
bonding properties in addition to steric, electrostatic and
hydrophobic property fields in CoMSIA did not reveal
models of significantly higher q2 values.71 However, it
has to be emphasized that these interaction or property
descriptions are not atom-type specific but “generic”.
Adding for example a hydroxyl group to a molecule will
influence all of the above-mentioned CoMSIA fields;
hence, these fields are not orthogonal to each other. In
contrast, the AFMoC fields are independent per defini-
tion, i.e., an additional hydroxyl group will only influ-

Figure 4. Experimentally determined binding affinities
versus fitted predictions for the training sets of 61 thermolysin
inhibitors (top) and 58 glycogen phosphorylase inhibitors
(bottom).

Table 5. Statistical Results for 10 Runs of “Leave-Five-Out”
Cross-Validation

thermolysin glycogen phosphorylase b

no. of
run q2 a Spress

b
compo-
nents q2 a spress

b
compo-
nents

1 0.61 (0.64) 1.34 9 0.54 (0.48) 0.78 4
2 0.60 (0.63) 1.37 10 0.59 (0.54) 0.74 4
3 0.66 (0.69) 1.25 10 0.59 (0.54) 0.74 3
4 0.60 (0.63) 1.36 10 0.67 (0.63) 0.66 4
5 0.61 (0.64) 1.35 10 0.58 (0.53) 0.74 3
6 0.51 (0.55) 1.51 10 0.52 (0.46) 0.79 2
7 0.61 (0.64) 1.35 10 0.55 (0.49) 0.76 2
8 0.52 (0.56) 1.49 10 0.58 (0.52) 0.74 3
9 0.53 (0.57) 1.48 10 0.56 (0.50) 0.76 3
10 0.57 (0.61) 1.40 9 0.62 (0.58) 0.70 3
LOOc 0.59 (0.62) 1.38 10 0.58 (0.52) 0.75 4

a Values are given considering only the part of binding affinity
(pKi

PLS) used in PLS analysis or considering the total binding
affinity (values in parentheses). b In logarithmic units. c For com-
parison, results of the “leave-one-out” cross-validation are shown.

Figure 5. Dependence of q2 values for AFMoC models on the
size of σ values (eq 3). The analyses were performed for the
training sets of glycogen phosphorylase (9) and thermolysin
(b) inhibitors.

Table 6. q2 Values for AFMoC Models Obtained with
Randomly Scrambled Affinity Data

q2 a

no. of
components thermolysin

glycogen
phosphorylase b

1 -0.17 (-0.08) -0.35 (-0.52)
2 -0.48 (-0.36) -0.75 (-0.97)
3 -0.52 (-0.40) -0.74 (-0.96)
4 -0.62 (-0.49) -0.77 (-0.99)
5 -0.85 (-0.70) -0.57 (-0.77)
6 -0.66 (-0.53) -0.36 (-0.53)
7 -0.69 (-0.55) -0.57 (-0.77)
8 -0.65 (-0.52) -0.57 (-0.77)
9 -0.69 (-0.55) -0.55 (-0.75)

10 -0.68 (-0.55) -0.61 (-0.81)
a Values are given considering only the part of binding affinity

(pKi
PLS) used in PLS analysis or considering the total binding

affinity (values in parentheses).
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ence the O.3 atom-type field. The inclusion of additional
field types is thus only limited by an adequate repre-
sentation of atoms of the respective types in the training
set. This, however, does not restrain the range of ligand
atom types permitted in the compounds of the test set.
For those ligand atoms not represented by the model
fields, the contributions from the original pair-potentials
are used (see Theory section).

In view of these arguments, the numbers of PLS
components (Table 4) have to be considered with respect
to the number of descriptors used as input for PLS
analyses. Especially in the thermolysin case, these
figures are higher for PLS models based on smaller grid
spacing. Similarly, the number of components selected
in terms of lowest sPRESS, also produced thermolysin
models with rather high values using CoMFA and
CoMSIA.54,70,71 The difference in considered components

between the glycogen phosphorylase b and thermolysin
data presumably arises from the fact that the com-
pounds of the former set are all derivatives of glucose

Table 7. q2 Values Obtained by AFMoC Using Different Combinations of Interaction Fields

thermolysin glycogen phosphorylase b

combination of fieldsa q2 b combination of fieldsa q2 b

C.3/O.3/O.2/O.co2/N.am 0.45 (0.50) C.3/C.2/C.ar/O.3/N.am 0.51 (0.48)
C.3/C.ar/O.3/O.2/O.co2/N.am 0.56 (0.60) C.3/C.2/C.ar/O.3/O.2/N.am 0.56 (0.50)
C.3/C.ar/O.3/O.2/O.co2/N.am/S.3 0.59 (0.62) C.3/C.2/C.ar/O.3/O.2/N.3/N.am 0.58 (0.52)
C.3/C.ar/O.3/O.2/O.co2/N.am/N.3 0.58 (0.61) C.3/C.2/C.ar/O.3/O.2/N.3/N.am/S.3 0.56 (0.52)
C.3/C.ar/O.3/O.2/O.co2/N.am/N.ar 0.56 (0.60)
C.3/C.ar/O.3/O.2/O.co2/N.am/C.2 0.54 (0.57)

a The denotation of the combination of interaction fields follows the atom type convention of SYBYL;66 further details are given in ref
14. b Values are given considering only the part of binding affinity (pKi

PLS) considered in PLS analysis or considering the total binding
affinity (values in parentheses).

Figure 6. Dependence of q2 values for AFMoC models on the
translation of the training compound sets (top: thermolysin;
bottom: glycogen phosphorylase) with respect to the grid
origin. Translations were performed in steps of 1/4, 1/2, and 3/4
of the grid spacing (9: 1.0 Å; b: 2.0 Å) along the xyz diagonal.

Figure 7. Experimentally determined binding affinities
versus predicted values for the test set compounds not included
in the training set (top: thermolysin inhibitors; bottom:
glycogen phosphorylase inhibitors b). For prediction, AFMoC
models generated using all 61 and 58 training compounds,
respectively, were considered. In addition to the line of ideal
correlation, dashed lines are given to indicate deviations of
one logarithmic unit from ideal prediction.
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being modified at the C1 atom (exceptions are 21 and
32). Thus, restricted structural (and hence energetic)
variations in a smaller region of the interaction grids
are experienced. The thermolysin inhibitors cover struc-
tural variations that range from the P1 to P2′ site, thus
involving a much larger grid space. Consequently, to
extract all information from the latter (higher dimen-
sional) case, more components are necessary. The

robustness of statistical results (e.g., leave-five-out
analysis and a convincing predictive power for the test
set, see below) makes us confident, however, that no
overfitting of the data occurred. This anticipation is
further corroborated by the fact that the q2 values still
rise by more than 5% on adding the last components to
both the thermolysin and glycogen phosphorylase b
models.

Figure 8. Dependence of r2 values for the binding affinity
prediction of the test sets of thermolysin inhibitors (top) and
glycogen phosphorylase b (bottom) on the mixing parameter
θ (eq 4). In addition, the influence of the size of the training
sets used to derive AFMoC models is depicted (number of
compounds in the training sets: 5 ([), 10 (2), 15 (b), 30 (9),
45 (+), all (x)). For comparison, the r2 value obtained using
the original DrugScore pair-potentials is shown (O).

Figure 9. AFMoC STDEV*COEFF contour plots elucidating
regions in the binding pocket of thermolysin where the
presence of carboxylate oxygens in different regions will
enhance (left) or reduce (right) binding. Contour levels are
-0.01 and 0.007, respectively.

Figure 10. AFMoC STDEV*COEFF contour maps showing
regions in the glycogen phosphorylase b binding pocket where
the presence (white isopleths) or absence (magenta isopleths)
of amide nitrogen (top) or carbonyl oxygen (bottom) atoms in
a ligand will enhance binding. Contour levels are -0.015 and
0.004 for the N.am contours and -0.006 and 0.0022 for the
O.2 contours, respectively. In both cases, ligands with weak
and strong binding affinities orient such atoms into the
contoured regions. In addition to the solvent-accessible surface
(solid), adjacent binding site residues are shown.

Table 8. Statistical Parameters for the Prediction of Binding
Affinities of the Test Set Compounds

thermolysin glycogen phosphorylase b

r2
DrugScore 0.34 0.00

SDDrugScore
a 1.62 3.11

r2
AFMoC 0.69 0.83

SDAFMoC
a 1.76 0.93

r2
CoMFA 0.63 0.67

SDCoMFA
a 1.50 1.04

a In logarithmic units.

Table 9. Statistical Results for the Prediction of Binding
Affinities Using Docked Ligand Geometries for the Test Set
Compounds

thermolysin thermolysina glycogen phosphorylase b

rmsdb 11 40 100
r2

DrugScore 0.12 0.24 0.12
r2

Mixed
c 0.21 (0.6) 0.44 (0.7) 0.48 (0.9)

r2
AFMoC 0.15 0.36 0.48
a All docking solutions were submitted to 300 cycles of energy

minimization with the MAB force field inside the (rigid) binding
pocket of thermolysin. b Percentage of cases with rmsd <2.0 Å of
automatically docked solutions with respect to the manually placed
geometries. c In parentheses, the mixing parameter θ is given.
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It has to be emphasized that all statistical analyses
were performed without applying variable selection
techniques that have been developed to distinguish
explanatory information contained in the descriptor
matrix from noise. Although usually improved models
of lower dimensionality result for the training sets, it
is still a matter of debate whether an improved predic-
tive power with respect to (new) molecules, not included
in the training set, is achieved (see refs 48 and 75 for a
critical summary). In addition, especially if selection
techniques on single variables are applied, noncontigu-
ous graphical contribution maps are obtained, that
hamper the interpretation of PLS results (see below).
The q2 values close to 0.6 for the 1.0 Å grid models
indicate in our case that PLS itself has successfully
extracted the relevant information from the descriptor
matrixes.

Predictive Power of AFMoC Models. To assess the
predictive power of the derived AFMoC models, binding
affinities of additional, manually docked ligands, not
contained in the training set, have been calculated (eq
4) exploiting the spatially adapted interaction fields.

For 9 of the 15 compounds in the thermolysin case
and 6 of the 8 ligands in the glycogen phosphorylase b
case, the deviations with respect to the experimental
binding affinity are less than one logarithmic unit
(Figure 7). However, the binding constants of ther-
molysin inhibitors 67-69 (Scheme 1) are underesti-
mated by more than 2.5 orders of magnitude. All three
compounds do not possess a substituent accommodating
the hydrophobic S1′ pocket and their Zn binding is
performed via an amide group. Among the training

compounds, nonoccupancy of S1′ is only experienced by
70-72 and zinc coordination through an amide group
(or the carbonyl oxygen of an hydroxamate group) occurs
for 73-75. All six compounds are weak inhibitors with
pKi e 4. Assuming that such weak inhibition can be
attributed to either a missing S1′ substituent or the
feeble amide zinc coordination, simultaneous presence
of both features in the three “outliers” explains why the
prediction of their binding affinities fails substantially.

In case of the glycogen phosphorylase b inhibitors, the
predicted binding affinity of compound 65 deviates by
1.6 logarithmic units. Here, an additional acetamido
substituent at the five-membered ring of the spiro
compound occupies a region of the binding pocket
previously not experienced by any of the training
compounds.

Table 8 shows the squared correlation coefficients and
standard deviations of the test set compounds derived
with the AFMoC models to those calculated by Drug-
Score. In the thermolysin case, the latter values are very
similar to those reported previously for docked geom-
etries,50 indicating that neither the process of manual
docking nor the grid representation of pair-potentials
for scoring influences prediction results. For both sets
of test compounds, a remarkable increase in the r2

values is apparent if protein-specifically adapted inter-
action grids are applied. This is in particular the case
for glycogen phosphorylase b inhibitors. Using Drug-
Score pair-potentials only, no reliable prediction of
binding affinities is achieved. The increased standard
deviations, despite improved r2, for thermolysin can be
attributed to the three outliers discussed above. Exclud-
ing these three compounds reveals r2 ) 0.84 and SD )
0.92 logarithmic units. Interestingly, “mixing” AFMoC
and DrugScore fields with a mixing parameter θ ) 0.7
yields a very similar r2 value of 0.68, while the SD value
drops to 1.36 logarithmic units. Here, the deviation of
each of the three outliers is reduced by more than one
logarithmic unit. In addition, Table 8 shows the statisti-
cal parameters for the test set predictions applying
CoMFA models. While in the thermolysin case, AFMoC
already shows a slightly superior predictive power
compared to CoMFA, our new method performs signifi-
cantly better for glycogen phosphorylase b. Together
with the comparison of q2 value reported above, this
latter case indicates that high predictive power of 3D
QSAR models cannot be assessed solely considering q2

values.76,77

The linear mixing of DrugScore and AFMoC interac-
tion fields for the binding affinity prediction is depicted
in Figure 8. Each data point with θ g 0.1 corresponds
to an average over 100 PLS models obtained with 5, 10,
15, 30, 45, or all training compounds (see Methods). The
maximum in predictive power reflected by the r2 value
with respect to a variation of the number of thermolysin
inhibitors used for training gradually shifts from θ )
0.4 for five compounds to θ ) 1.0 for all 61 compounds.
Hence, if only a small amount of training information
is available, best predictive power is achieved by com-
bining generally valid and specifically adapted scoring
information. In contrary, for the glycogen phosphorylase
b case, the highest r2 values are obtained using only
the adapted AFMoC models (θ ) 1.0), irrespective of
the amount of information used for training. Certainly,

Scheme 1. Thermolysin Inhibitors
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the lacking predictive power reflected by the sole usage
of pair-potentials determines these results. Further-
more, the more pronounced structural variance of the
thermolysin test compounds compared to those of the
glycogen phosphorylase b test set requires a more
distinct consideration of the general pair-potentials in
the thermolysin case. For both examples, considering a
set of only 15 (approximately 25% of all) training
compounds, r2 values are already obtained that mirror
a significant improvement in predictive power compared
to the sole consideration of the original DrugScore pair-
potentials (thermolysin case: θ ) 0.6, r2 ) 0.48 ( 0.08;
glycogen phosphorylase b case: θ ) 1.0, r2 ) 0.31 (
0.22). In contrast, increasing the number of training
compounds from 45 to 61 or 58, respectively, yields only
a slight ascent in predictive power.

The observed performance suggests using AFMoC as
a tunable or tailor-made scoring function in structure-
based drug design. While for initial lead finding a
generally valid scoring function such as DrugScore is
required, subsequently collected experimental evidence
(in structural and energetic terms) for the biological
target of interest can be fed back into AFMoC models.
In response to the amount of new and target-specific
information provided and the structural similarity of the
compounds to be scored, predictions based on a protein-
specifically adapted scoring function are achieved de-
pending on the “mixing” parameter θ. In an iterative
process, a hierarchical procedure is followed. However,
in contrast to other approaches,78,79 the underlying
methodology is not changed but steadily adjusted to the
increasing knowledge about the target under investiga-
tion.

Predictions for FlexX-Docked Ligand Geom-
etries. For CoMFA-type calculations, the mutual rela-
tive alignment of the data set molecules is crucial.
However, to use specifically adapted AFMoC fields in
virtual screening, a reliable prediction of binding af-
finities must also be provided for ligand binding modes
generated by automatic docking tools. Hence, we gener-
ated with FlexX up to 500 ligand poses for all molecules
of both test sets and rescored them with appropriate
AFMoC models obtained using all training compounds.
Table 9 shows that in case of glycogen phosphorylase b
a significantly improved prediction of binding affinities
is achieved using the AFMoC model (r2 ) 0.48) com-
pared to the sole scoring with DrugScore pair-potentials
(r2 ) 0.12). For the thermolysin inhibitors, however, no
improvement is found using the FlexX generated bind-
ing modes by either methods (r2 ) 0.12 compared to r2

) 0.15). In the former case, all inhibitors were docked
within less than 2.0 Å rmsd compared to the orienta-
tions obtained by manual docking. However, in the
thermolysin case, this only holds for 11% of the mol-
ecules, although here a more elaborate sampling has
already been performed during binding mode genera-
tion. To assess whether improved binding geometries
would result in better affinity predictions, all binding
modes of thermolysin inhibitors were subjected to an
energy minimization with MAB.62 As a consequence, 6
of the 15 test set molecules (40%) adopt binding modes
deviating by less than 2.0 Å rmsd from the manually
docked geometries. More important, a remarkable im-
provement of r2 to 0.36 is obtained using AFMoC fields.

These enhanced predictions based on minimized ligand
poses strongly support the fact that automatic docking
tools have to produce geometrically improved ligand
orientations. Nevertheless, one should keep in mind that
the set of thermolysin inhibitors with up to 15 rotatable
bonds per molecule is a challenging test for every
docking algorithm. Interestingly, combining DrugScore
and AFMoC interaction fields using θ ) 0.7 even yields
r2 ) 0.44. Hence, while for the manually docked test
ligands solely using AFMoC fields revealed the best
results, the more “blurred” ligand placements produced
by a docking tool requires an increasing consideration
of the generally valid DrugScore pair-potentials for
ligand scoring. Similarly, using AFMoC fields, which
were generated using an increased σ value of 0.85 and
1.00 (instead of θ ) 0.7 as “default” for thermolysin
while keeping all other parameters identical), r2 values
(with θ ) 0.6) of 0.33 and 0.36, respectively, are obtained
even with the ligand poses calculated directly with
FlexX. More widely distributing the information of the
protein-ligand interactions to neighboring grid points
during the calculation of interaction fields hence results
in larger robustness and tolerance with respect to
deviations in ligand placement for the prediction of
binding affinities. In any case, the results of these
calculations suggest an enhanced scope of our new
method in the field of drug development.

Graphical Interpretation of AFMoC Results. In
drug design, first of all reliable predictions of binding
affinities for new compounds are important. Further-
more, an intuitive graphical interpretation of the models
used to predict affinities support the proposal how
structural modifications of already known ligands could
improve binding. In this context, AFMoC reveals im-
portant advantages. Figures 9 and 10 show correlation
results mapped back onto molecular structures in terms
of “STDEV*COEFF” fields.49 Contour diagrams of field
contributions for the different ligand atom types are
given together with important binding-site residues and
exemplary inhibitors. The obtained contour diagrams
possess a contiguous and smoothly connected shape,
which facilitates their interpretation. In addition,
AFMoC field contributions occur at the location of ligand
atoms, clearly denoting regions where it is either more
favorable or disfavorable to place ligand atoms of a given
type with respect to binding affinity. These character-
istics are similar to those of CoMSIA fields.54,80

However, there are more advantages. First, atom-
type specific interaction fields in contrast to generic
property fields enable one to propose structural modi-
fications in terms of favorable ligand atom types.
CoMFA or CoMSIA only allow suggestions such as
“place a more bulky group with more negative electro-
static potential in this binding pocket site”. Second,
since only protein-ligand interactions up to a distance
of 6 Å are mapped onto neighboring grid points, those
parts of the ligands which are solvent exposed will not
be taken into account. Hence, in contrast CoMFA or
CoMSIA examine interactions to all parts of the ligands
by the different probes. Finally, as implicitly provided
by the methodology, map features can be discussed (and
validated) in terms of the protein environment.

Figure 9 elucidates regions in the binding pocket of
thermolysin where the presence of carboxylate oxygens
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enhances (left) or reduces (right) binding affinity. Obvi-
ously, a -COO- chelating the Zn is favored over a single
coordination. In addition, the second carboxylate of 76
interacts with the amide nitrogen of Asn112, which
according to the contour map also contributes favorably
to binding. However, given the rather pronounced
differences between both ligands, the observed binding
affinities (76: pKi ) 7.5; 77: pKi ) 3.4) cannot solely be
attributed to deviations in carboxylate oxygen interac-
tions. Rather, additional contour maps must be con-
sulted to detect further explanations.

The upper part of Figure 10 shows the contours of
amide nitrogen atoms in the binding pocket of glycogen
phosphorylase b. Both ligands 36 and 47 possess an
amide nitrogen in the region indicated as favorable
(white contour). Here, an hydrogen bond to the carbonyl
group of His377 enhances binding.73,81 Interestingly,
next to this contour a disfavorable region (magenta) is
indicated for amide nitrogens that originates from close
contact with the protein. One has to recall, that the
product of the coefficient of the QSAR equation times
the value of the interaction field at this grid point
determines the contribution to binding affinity. The
values of the interaction field for N.am calculated with
DrugScore potentials obviously possess a negative sign
in this region. It should be noted, however, that they
are calculated by considering all protein atoms within
a cutoff of 6 Å. In addition, test calculations have shown
that a rather “soft” repulsion term (operating between
amide nitrogen and carbonyl oxygen in this case) yields
models with best predictive power. Within the protein,
interaction fields have of course positive signs. Since,
however, the standard deviation in interaction field
values is close to zero in these regions, they are excluded
from input into PLS, hence no contours are revealed.

The disfavored region for amide nitrogens on the right
is more difficult to interpret. One has to keep in mind
that disfavorable contributions to binding affinity do not
only result from the presence of disfavorable interaction
partners in the protein but also from the absence of
favorable ones. The latter holds in this case, even so,
the carboxylate group of Asp339 is more than 3.5 Å
apart. However, a different orientation of the substitu-
ent of 47 is hardly possible due to the rather stringent
fixation of the sugar moiety in its subpocket and the
conformationally rigid amide side chain. Supposedly, an
unfavorable desolvation of the terminal amide nitrogen
that does not find a reasonable interaction partner in
the protein reduces binding affinity.

Finally, the lower part of Figure 10 shows regions of
the glycogen phosphorylase b binding pocket where
carbonyl-oxygens are (dis-)favorable. In the white con-
toured area, binding is favored due to hydrogen bond
formation with the amide nitrogen of Asn284 (3.0 Å).
Furthermore, the adjacent amide nitrogen of 36 forms
an hydrogen bond to the carbonyl oxygen of His377 as
discussed above. Ligand 53 exhibits an amide group of
reversed orientation. It positions its carbonyl oxygen to
an unfavorable region (magenta contour), which sup-
posedly suffers from the electrostatic repulsion with the
carboxylate group of Asp283 (3.2 Å). The reverse
orientation of the amide group in 53 compared to 36
reinforces a ligand pose that also affects the position of
the sugar moiety. While part of the low binding affinity

(pKi ) 2.1) can be attributed to the formation of a
nonoptimal hydrogen-bonding network to the protein
(also indicated by contour maps for hydroxyl-oxygens
not shown here), the unfavorable positioning of the
carbonyl oxygen is also detrimental for binding.

The examples discussed show that differences in
binding affinities can be interpreted in structural terms
in particular if the protein environment is considered
and information from contribution maps of various atom
types are consulted.

Current Limitations and Future Enhancements.
In the current study, only interactions between the
protein environment (and a Zn ion in the case of
thermolysin) and the ligands are taken into account to
calculate interaction fields. In the glycogen phosphory-
lase b case, the protein structure of the T state is used.
Here, the distance between the cofactor pyridoxal
phosphate and the C1-substituents of the glucose in the
modeled inhibitors is larger or close to 6 Å. This distance
coincides with the cutoff of the pair-potentials. Assum-
ing similar cofactor-to-sugar distances across the ligands
of the data set, the influence on binding affinity differ-
ences due to the presence of pyridoxal phosphate should
be negligible. However, cofactors can in principle be
included by considering them as part of the protein. In
the compilation of atom-atom pair-distributions, such
consideration has been performed and information is
contained in the pair-potentials.14

In addition, convincing results are obtained although
water molecules were not included into the analyses.
Several aspects could explain this finding. Converting
structural database information of experimentally de-
termined complexes into pair-potentials implicitly in-
cludes entropy-driven effects arising from (de-)solva-
tion.7 Although water molecules possibly mediate
protein-ligand interactions and likely are a major
player in receptor plasticity,82 their actual contribution
to binding affinity depends on the molecular system
considered. Finally, if all ligands in a series interact
similarly with active site waters, the water influence
will cancel out during PLS.

Recently, Pastor et al.83 incorporated binding site
waters present in glycogen phosphorylase b into a
GRID/GOLPE analyses. Apart from lower dimensional-
ity of the models including water compared to those
missing water, the increase in predictive power with
respect to q2 was not significant. For thermolysin, no
QSAR study with explicit consideration of water mol-
ecules has been performed. The inclusion of (implicit)
desolvation energy fields in CoMFA69 did not improve
the statistical quality of the models. Recently, we
developed pair-potentials for water-to-ligand or water-
to-protein interactions following the DrugScore formal-
ism (unpublished results). The explicit consideration of
water molecules as part of the receptor or as part of the
ligands during interaction field calculations can hence
be performed.

In contrast to COMBINE30 and FEFF 3D QSAR,84 we
neglect internal ligand strain energies. In our case,
minimizing the ligand structures inside the binding
pocket releases internal ligand strain. In addition,
recent studies have shown that energy differences
between ligand conformations in solution and protein-
bound state are rather small.85,86 One may anticipate,
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however, that one reason for the improved predictive
power found after minimization with respect to ther-
molysin inhibitors docked with FlexX is the relief of
strain energy. Hence, the generated ligand configura-
tions better adapt to regions where training molecules
were located.

A current limitation is the assumption of a rigid
protein structure, although repulsive interactions are
reduced by energy minimization. Possibly distorted
ligand conformations can result from inappropriate
considerations of protein induced-fit effects. Presently,
such effects have not been reported for the two case
studies used in this paper. To account for protein
plasticity, a possible alternative would be “floating
independent reference frames”. Here, every adjacent
grid point is allowed to move with the protein region.87

Conclusion

In the present study, we developed protein-specifically
adapted knowledge-based pair-potentials tailored to one
particular protein by considering additional ligand-
based information in a CoMFA-type approach. This
results in either a tailor-made scoring function or a
“reverse” protein-based CoMFA () AFMoC) method.
Thus, we combine the benefits of CoMFA (spatial
adaptation of interaction fields, graphical evaluation of
results) with those of knowledge-based pair-potentials.
Furthermore, descriptors are used that produce mutu-
ally orthogonal interaction fields and are atom-type
specific. Finally, by gradually moving from generally
valid to protein-specifically adapted pair-potentials one
permits to reflect the amount and the degree of struc-
tural diversity available in the ligand training data.

We validated the new approach using two data sets
of inhibitors for thermolysin and glycogen phosphorylase
b. We obtained convincing predictive power in both
cases, based on leave-one- and leave-five-out procedures
as well as the prediction of external compounds. Most
remarkably, we have found significant increase in
predictive power compared to the application of the
original pair-potentials when additional information of
only 15 ligands is incorporated. Furthermore, convincing
binding affinity predictions have been achieved not only
for manually docked ligand configurations but also for
those generated by automatic docking. This enhances
the scope of our new method considerably with respect
to lead finding. Since the method can be steadily
adjusted to the increasing information in ongoing drug
development projects, the continuous feedback of novel
experimental information will enhance the predictive
power of each subsequently computed model.
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(9) Stahl, M.; Böhm, H.-J. Development of filter functions for
protein-ligand docking - Fast, fully automated docking of
flexible ligands to protein binding sites. J. Mol. Graph. Model.
1998, 16, 121-132.
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